Products

Home / Products / Aquaculture fish farming equipments / Online Automatic Intelligent Control
Online Automatic Intelligent Control System \ Aquaponicter.com
A smart monitoring and control system that continuously tracks water quality parameters (such as pH, temperature, oxygen, and ammonia) and automatically adjusts equipment to maintain optimal aquaculture conditions.

Online Automatic Intelligent Control System

An intelligent control system in Recirculating Aquaculture Systems (RAS) integrates real-time monitoring, automation, and AI-driven decision-making to optimize:

Water quality (O₂, pH, ammonia, temperature, etc.).

Equipment operation (pumps, filters, UV/O₃ dosing).

Fish health & feeding.

Energy efficiency.

These systems reduce labor, prevent disasters, and maximize productivity in commercial RAS

1. Core Components of an Intelligent RAS Control System

A. Sensors & Real-Time Monitoring

Parameter

Sensor Type

Why It Matters

Dissolved Oxygen (DO)

Optical DO probe

Prevents fish suffocation

pH

Glass-electrode pH sensor

Critical for biofilter health

Ammonia (NH₃/NH₄⁺)

Ion-selective electrode

Detects biofilter failure

Temperature

PT100/thermocouple

Affects O₂, metabolism, and bacteria

ORP (Oxidation-Reduction Potential)

Redox probe

Controls ozone/chlorine dosing

Turbidity/TSS

Optical backscatter

Monifies filter performance

CO₂

NDIR sensor

High CO₂ suffocates fish

B. Automated Equipment Control

Variable-speed pumps (adjust flow based on demand).

Smart valves (regulate water exchange, backwashing).

O₂/ozone injectors (AI adjusts dosing based on sensor data).

Auto-feeders (computer vision or acoustic sensors optimize feeding).

C. Central AI Controller (Brain of the System)

Machine learning algorithms predict:

Ammonia spikes before they happen.

Optimal feeding times based on fish behavior.

Energy-saving schedules (e.g., running pumps at off-peak hours).

Cloud-based dashboards (remotely monitor RAS via phone/PC).

2. How Intelligent Control Works in RAS

Step 1: Data Collection

Sensors send real-time data (e.g., “DO = 4.2 mg/L”) to the central controller.

Step 2: AI Analysis

The system compares data to safe thresholds (e.g., “DO < 5 mg/L → risk”).

Uses historical trends to predict issues (e.g., “Ammonia will spike in 2 hours”).

Step 3: Automated Response

Example 1: Low DO → O₂ injector turns on + alarm sent to manager.

Example 2: High ammonia → Increase biofilter flow + reduce feeding.

Example 3: Fish not eating → Adjust feed type/schedule via auto-feeder.

Step 4: Reporting & Optimization

Generates daily reports on:

Water quality trends.

Equipment efficiency.

Feed conversion ratios (FCR).

3. Benefits of Intelligent RAS Control

✅ Prevents Fish Losses (e.g., stops O₂ crashes before they happen).
✅ Saves Energy (e.g., pumps run only when needed).
✅ Reduces Labor (no manual testing/equipment adjustments).
✅ Improves Feed Efficiency (AI optimizes feeding, reducing waste).
✅ Early Disease Detection (AI spots abnormal fish behavior).

4. Future Trends in RAS Automation

Blockchain traceability (track fish from egg to harvest).

Robotic harvesters (AI-guided grading/culling).

Predictive maintenance (AI detects pump failures before they happen).

Do You Need an Intelligent Control System?

For small RAS: Basic PLC + sensors.

For commercial RAS: Invest in AI-driven systems

 

en_GBEnglish (UK)